0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Properties of Biomimetic Leaf Composite

[+] Author Affiliations
Hamid Nayeb Hashemi, Gongdai Liu, Ashkan Vaziri, Ranajay Ghosh

Northeastern University, Boston, MA

Masoud Olia

Wentworth Institute of Technology, Boston, MA

Paper No. IMECE2016-65503, pp. V009T12A007; 9 pages
doi:10.1115/IMECE2016-65503
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5063-3
  • Copyright © 2016 by ASME

abstract

In this paper, we mimic the venous morphology of a typical plant leaf into a fiber composite structure where the veins are replaced by stiff fibers and the rest of the leaf is idealized as an elastic perfectly plastic polymeric matrix. The variegated venations found in nature are idealized into three principal fibers — the central mid-fiber corresponding to the mid-rib, straight parallel secondary fibers attached to the mid-fiber representing the secondary veins and then another set of parallel fibers emanating from the secondary fibers mimicking the tertiary veins of a typical leaf. The tertiary fibers do not interconnect the secondary fibers in our present study. We carry out finite element (FE) based computational investigation of the mechanical properties such as Young’s moduli, Poisson’s ratio and yield stress under uniaxial loading of the resultant composite structures and study the effect of different fiber architectures. To this end, we use two broad types of architectures both having similar central main fiber but differing in either having only secondary fibers or additional tertiary fibers. The fiber and matrix volume fractions are kept constant and a comparative parametric study is carried out by varying the inclination of the secondary fibers. We find significant effect of fiber inclination on the overall mechanical properties of the composites with higher fiber angles transitioning the composite increasingly into a matrix-dominated response. We also find that in general, composites with only secondary fibers are stiffer with closed cell architecture of the secondary fibers. The closed cell architecture also arrested the yield stress decrease and Poisson’s ratio increase at higher fiber angles thereby mitigating the transition into the matrix dominated mode. The addition of tertiary fibers also had a pronounced effect in arresting this transition into the matrix dominated mode. However, it was found that indiscriminate addition of tertiary fibers may not provide desired additional stiffness for fixed volume fraction of constituents. In conclusion, introducing a leaf-mimicking topology in fiber architecture can provide significant additional degrees of tunability in design of these composite structures.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In