0

Full Content is available to subscribers

Subscribe/Learn More  >

Morphological Characterization of Fouling on Air Cooled Fin Fan Heat Exchangers

[+] Author Affiliations
Arjun Sharma, Tariq S. Khan, Ebrahim Al Hajri, Md. Islam

Petroleum Institute, Abu Dhabi, UAE

Paper No. IMECE2016-66972, pp. V008T10A103; 7 pages
doi:10.1115/IMECE2016-66972
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

In today’s fast growing world where availability of energy has become a major concern, the cost of performance demands optimum heat exchange performance over extended periods of operational times. Fouling is one major factor that drastically affects heat exchanger performance. Most of the oil & gas processing plants in the Middle East are located in deserts. Due to scarcity of water most of the installed heat exchangers are air-cooled. These heat exchangers are at high risk of low performance due to dusty/sticky particulate fouling. In order to identify possible active/passive methods to control or ideally eliminate particulate fouling, as a first step, it is desirable to know exact morphology of such particulate fouling. This study presents morphological characterization of selected fouling samples from eight different installed fin fan heat exchangers. The scanning electron microscope (SEM) tests are carried out to determine standard characteristics and size of sample foulant powder. Variability in sizes and shapes is found between samples perhaps due to different working temperature ranges of the selected heat exchangers. The semi quantitative sample composition measured by energy dispersion x-ray micro analysis was as following: 26.50% Si, 26.12% Ca, 10.07% C and 9% Al with traces of Fe, Na, Mg, Cl, and some other salts. X-ray diffraction analysis revealed presence of quartz, calcite and alumina with traces of halite and hematite. The diversity of these fouling samples reflects complexity with respect to their potential removal and effects on heat transfer.

Copyright © 2016 by ASME
Topics: Heat exchangers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In