0

Full Content is available to subscribers

Subscribe/Learn More  >

Magnetic Resonance Thermometry Experimental Setup: A Portable Heat Transfer Experiment

[+] Author Affiliations
Elliott T. Williams, Jonathan R. Spirnak, Marc C. Samland, Brant G. Tremont, Alfred L. McQuirter, Claire M. VerHulst, Bret P. Van Poppel, Michael J. Benson

United States Military Academy, West Point, NY

Christopher J. Elkins, Lauren S. Burton, John K. Eaton

Stanford University, Stanford, CA

Paper No. IMECE2016-67818, pp. V008T10A094; 16 pages
doi:10.1115/IMECE2016-67818
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

This work provides a detailed description of the setup and execution of an experiment employing Magnetic Resonance Thermometry (MRT) techniques for measuring the three-dimensional temperature field of a fully turbulent jet mixing with a cross flow. The proposed methodology has the flexibility of applying different thermal boundary conditions — adiabatic and conductive — by varying the materials used in the test section as well as varying the temperatures of the mixing flows. The experiment described in this paper employs a standard magnetic resonance imaging system comparable to those used in medical radiology departments worldwide. A series of MR scans with both isothermal and thermal mixing conditions were conducted and results are presented with sub-millimeter resolution across the measured 3D domain of interest within one degree Celsius. The methodology presented here holds unique advantages over conventional techniques because measurements can be acquired without introducing flow disturbances and in regions without any optical access. When coupled with other established MR-based measurement techniques, MRT provides large, robust data sets that can be used for validation, design, and insight into system thermal performance for complex, turbulent flows. The materials and components employed in this work cost approximately $13,900, and the experimental setup and data collection required approximately 48 hours.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In