Full Content is available to subscribers

Subscribe/Learn More  >

Extending Die-Attachment Fatigue Life of Power Electronics Using Phase Change Materials

[+] Author Affiliations
Levi J. Elston

Air Force Research Laboratory, WPAFB, OH

Paper No. IMECE2016-65151, pp. V008T10A072; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6


The ever-increasing power throughput and ever-decreasing size of modern electronics, specifically power electronics, requires more advanced packaging techniques and materials to maintain thermal limits and sustain mechanical life. Specific applications with known operating conditions for these components can realize added benefits through a tailored thermal-mechanical-electrical optimized assembly, potentially utilizing niche material classes. Without losing any expected functionality, solid-liquid phase change materials could be incorporated into the device structure to reduce peak temperature and/or suppress high-cycle fatigue problems commonly found at die-attachment interfaces. The purpose of this study was to investigate, through model-based design and analysis, the impact of using organic phase-change materials (PCMs) at two strategic locations in the standard device stack. The results suggest noteworthy life improvement (40%) is possible when optimizing for a given melt point material. Additionally, further improvements were predicted through future material enhancements, namely thermal conductivity and latent heat.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In