Full Content is available to subscribers

Subscribe/Learn More  >

Novel Evaporator Geometries Based on Entrance-Length Flow-Paths for Geothermal Binary Power Plants

[+] Author Affiliations
Adrian S. Sabau, James W. Klett

Oak Ridge National Laboratory, Oak Ridge, TN

Ali H. Nejad, Kivanc Ekici

University of Tennessee, Knoxville, TN

Adrian Bejan

Duke University, Durham, NC

Paper No. IMECE2016-67660, pp. V008T10A069; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


In this paper, a novel geometry is proposed for evaporators that are used in Organic Rankine Cycles. The proposed geometry consists of employing successive plenums at several length-scale levels, creating a multi-scale heat exchanger. The channels at the lowest length-scale levels were considered to have their length given by the thermal entrance-length. Numerical simulations based on turbulent flow correlations for supercritical R134a and water were used to obtain performance indicators for new heat exchangers and baseline heat exchangers. The relationship between the size of the channels at one level, k, with respect to the size of the channels at the next level, k + 1, is based on generalization of the “Murray’s law.” In order to account for the variation of the temperature and heat transfer coefficient in the entrance region, a heat transfer model was developed. The variation of the brine and refrigerant temperatures along each pipe was considered. Using the data on pumping power and weight of metal structures, including that of all the plenums and piping, the total present cost was evaluated using a cost model for shell-and-tube heat exchangers. In addition to the total present cost, the data on overall thermal resistance is also used in identifying optimal heat exchanger configurations. The main design variables include: tube arrangement, number of channels fed from plenum, and number of rows in the tube bank seen by the outside fluid. In order to assess the potential improvement of the new evaporator designs, baseline evaporators were designed. The baseline evaporator designs include long tubes of the same diameter as those of the lowest length-scale levels, placed between one inlet and one outlet. The baseline evaporator designs were created from the new evaporator designs by simply removing most of the internal plenums employing tubes much longer than their entrance length, as they would currently be used. Consistent with geothermal applications, the performance of new heat exchanger designs was compared to that of baseline heat exchanger designs at the same flow rates. For some operating conditions it was found that the new heat exchangers outperform their corresponding baseline heat exchangers.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In