Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Analysis of Offshore Buried Pipelines Through Experimental Investigations and Numerical Analysis

[+] Author Affiliations
Suvra Chakraborty, Mohammad Haghighi, Yuri Muzychka

Memorial University of Newfoundland, St. John’s, NL, Canada

Vandad Talimi, Rodney McAffee

C-CORE, St. John’s, NL, Canada

Paper No. IMECE2016-65441, pp. V008T10A064; 9 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


Modeling of heat loss from offshore buried pipelines is one of the prime concerns for Oil and Gas industries. Offshore Oil and Gas production and thermal modeling of buried pipelines in arctic regions are challenging tasks due to environmental conditions and hazards. Flow properties of Oil and Gas flowing through the pipelines in arctic regions are also affected due to freezing around pipelines. Solid formation in the production path can have serious implications on production. Heavy components of crude oil start to precipitate as wax crystal when the fluid temperature drops. Gas hydrates also form when natural gas combines with free water at high pressure and low temperature. Pipeline burial and trenching in some offshore developments are now one of the prime methods to avoid ice gouge, ice cover, icebergs, and other threats. Long pipelines require more thermal management to deliver production to the sea surface. Significant heat loss may occur from offshore buried pipelines in the forms of heat conduction and natural convection through the seabed. The later can become more prominent where the backfill soil is loose or sandy. The aim of this paper is to provide an insight of modeling and conducting the experiments using different parameters with numerical analysis results support to investigate the heat loss from offshore buried pipelines. This paper also provides validation of the outputs from benchmark tests with analytical models available for theoretical shape factor at constant temperature and constant heat flux boundary conditions. These theoretical models have limitations such as the assumption of uniform soil properties around the buried pipeline, isothermal outer surface of the buried pipeline and soil surface. Degree of saturation of surrounding medium can play a significant role in the thermal behavior of fluid travelling through the backfill soil. This paper presents several steady states and transient response analysis describing some influential geotechnical parameters along with test procedures and numerical simulations using CFD to model the heat loss for different parameters such as burial depth, backfill soil, trench geometries etc. This paper also shows the transient response for several shutdown (cooldown) tests performed in the saturated sand medium. The statistical and uncertainty analysis performed from the experimental outputs also ensure the legitimacy of the experimental model. The outcomes of this research will provide valuable experimental data and numerical predictions for offshore pipeline design, heat loss from buried pipelines in offshore conditions, and efficient model to mitigate the flow assurance issues e.g. wax and hydrates.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In