Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Combustion Performance of Pulverized Coal Burner

[+] Author Affiliations
Xiaoqian Ma, Mo Yang

University of Shanghai for Science and Technology, Shanghai, China

Yuwen Zhang

University of Missouri, Columbia, MO

Paper No. IMECE2016-68004, pp. V008T10A063; 6 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


The combustion mechanism of pulverized coal in a DRB-4Z burner are analyzed and the temperature distribution, char burnout and CO production in the burner outlet area are obtained. The gas phase turbulence model is the Realizable k-ε two equation model, and radiation heat transfer model is P-1 radiation model. The discrete phase model is used to simulate the force and motion trajectory of the pulverized coal particles, and the stochastic model is used to simulate the flow of coal particles. The combustion model is non-premixed combustion model, and the devolatilization model is two competing rates model; char combustion model is kinetics/diffusion-limited model. Numerical results revealed the mechanism of pulverized coal devolatilization and char combustion, and the solution may give reference to air arrangement of the same type of burners.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In