Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of a Hybrid Thermal Insulation With Phase Change Material for Subsea Pipelines

[+] Author Affiliations
Mohammad Parsazadeh, Xili Duan

Memorial University of Newfoundland, St. John’s, NL, Canada

Paper No. IMECE2016-67563, pp. V008T10A060; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


Flow assurance is critical in offshore oil and gas production. Thermal insulation is an effective way to reduce heat loss from subsea pipelines and avoid the formation of hydrates or wax deposits that could block the flowlines. This paper presents a hybrid thermal insulation model with a combination of phase change material (PCM) and conventional insulating layers. The idea is to use PCM to store thermal energy with normal oil and gas production and release heat back to the fluids during a shut-in operation. Melting and solidification of the PCM layer is analyzed for different thicknesses at both working and shut-in conditions. The model is developed numerically using a Finite Volume Method (FVM) and an enthalpy porosity technique. It accounts for heat conduction with liquid-solid phase changes, as well as natural convection in the PCM. In this study, paraffin is implemented as PCM with temperature dependent properties while Aerogel is used as the conventional insulation layer. The results show that ticker PCM layer than conventional insulating layer can significantly improve thermal insulation performance, with extended cool-down time during flow line shut in.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In