0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Heat Transfer Capability of a Miniature Loop Heat Pipe

[+] Author Affiliations
Guohui Zhou, Ji Li, Lucang Lv

University of Chinese Academy of Sciences, Beijing, China

Paper No. IMECE2016-66566, pp. V008T10A047; 7 pages
doi:10.1115/IMECE2016-66566
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

In this paper, a miniature loop heat pipe (mLHP) with a flat evaporator is illustrated and investigated experimentally, with water as the working fluid. The mLHP can be applied for the mobile electronics cooling, such as tablet computers and laptop computers, with a 1.2 mm thick ultra-thin flat evaporator and a thickness of 1.0 mm for the vapor line, liquid line and condenser. A narrow sintered copper mesh in the liquid line and a part of the condenser as the secondary wick can promote the flow of the condensed working fluid back to the evaporator. The experimental results showed that the mLHP could start up successfully and operate stably at low heat load of 3 W in the horizontal orientation, and transport a high heat load of 12 W (the heat flux of 4 W/cm2) with the evaporator temperature below 100 °C in different test orientations by natural convection, showing good operational performance against gravity field. The minimum mLHP thermal resistance of 0.32 K/W was achieved at the input heat load of 12 W in the horizontal orientation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In