0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization of a Data Center Modeling Using Response Surface

[+] Author Affiliations
Long Phan, Cheng-Xian Lin

Florida International University, Miami, FL

Paper No. IMECE2016-67800, pp. V008T10A044; 9 pages
doi:10.1115/IMECE2016-67800
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

Energy consumption and thermal management have become key challenges in the design of large-scale data centers, where perforated tiles are used together with cold and hot aisles configuration to improve thermal management. Although full-field simulations using computational fluid dynamics and heat transfer (CFD/HT) tools can be applied to predict the flow and temperature fields inside data centers, their running time remain the biggest challenge to most modelers. In this paper, response surface methodology based on radial basis function is used to significantly reduce the running time for generating a large set of generations during a two-objective minimization process which uses the genetic algorithm as its main engine. Three design parameters including mass flow inlet, inlet temperature, and server heat load are investigated for a two-objective optimization. The goal is to minimize both the temperature difference and the maximum temperature inside the data center and search for a range of design parameters that satisfy both of these objectives. Numerous radial basis function models are studied and compared. Discussion on a more preferred scheme for the response surface construction is provided. Finally, a graph of Pareto font is generated showing the set of optimal designs in the objective space, and Pareto design validation is also performed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In