Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation on Viscous Dissipation Effect in Forced Convection in Rectangular Microchannels With Nanofluids

[+] Author Affiliations
Bernardo Buonomo, Luca Cirillo, Davide Ercole, Oronzio Manca, Sergio Nardini

Seconda Università degli Studi di Napoli, Aversa, Italy

Paper No. IMECE2016-66189, pp. V008T10A033; 7 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel, taking into account the viscous dissipation, is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Ansys-Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar incompressible flow with viscous dissipation and different nanoparticle volume fractions has been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). Thermo-physical properties of the nanofluid are considered constant with temperature. The length the edge and height of the duct are 0.030 m, 1.7 × 10−7 and 1.1 × 10−7 m, respectively. A constant and uniform heat flux q on the top wall is applied, the others are adiabatic and at the inlet section uniform temperature and velocity profiles are assumed. The results showed the increase of the convective heat transfer coefficients, in particular, for high concentration of nanoparticles and for increasing values of Reynolds number. However, the disadvantages are represented by the growth of the wall shear stress and the required pumping power, observed in particular, at high particle concentrations.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In