0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study of the Simultaneous Natural Convective Heat Transfer From the Upper and Lower Surfaces of a Thin Isothermal Horizontal Circular Plate

[+] Author Affiliations
Patrick H. Oosthuizen

Queen’s University, Kingston, ON, Canada

Abdulrahim Kalendar

Public Authority for Applied Education and Training, Shuwaikh, Kuwait

Paper No. IMECE2016-65540, pp. V008T10A030; 8 pages
doi:10.1115/IMECE2016-65540
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

Natural convective heat transfer from the top and bottom surfaces of a thin circular isothermal horizontal plate which, in general, has a centrally placed adiabatic section has been numerically investigated. The temperature of the plate surfaces is higher than the temperature of the surrounding fluid. The range of conditions considered is such that laminar, transitional, and turbulent flow occurs over the plate. The heat transfer from the upper and lower surfaces of the plate as well as the mean heat transfer rate from the entire surface of the plate have been considered. The flow has been assumed to be axisymmetric and steady. The k-epsilon turbulence model with account being taken of buoyancy force effects has been used and the solution has been obtained using the commercial CFD solver ANSYS FLUENT©. The heat transfer rate from the heated plate has been expressed in terms of a Nusselt number based on the outside plate diameter and the difference between the plate temperature and the fluid temperature far from the plate. The mean Nusselt number is dependent on the Rayleigh number, the ratio of the diameter of the inner adiabatic section to the outer plate diameter, and the Prandtl number. Results have only been obtained for a Prandtl number of 0.74, i.e., effectively the value for air. The variations of the mean Nusselt number averaged over both the upper and lower surfaces and of the mean Nusselt numbers for the upper surface and for the lower surface with Rayleigh number for various adiabatic section diameter ratios have been studied. The use of a reference length scale to allow the correlation of these mean Nusselt number-Rayleigh number variations has been investigated.

Copyright © 2016 by ASME
Topics: Convection

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In