0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation on Forced Convection Heat Transfer Performance and Pressure Drop of High Permeability Porous Media

[+] Author Affiliations
Shigeki Hirasawa, Tsuyoshi Kawanami, Katsuaki Shirai

Kobe University, Hyogo, Japan

Paper No. IMECE2016-65321, pp. V008T10A029; 6 pages
doi:10.1115/IMECE2016-65321
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

We studied the forced convection heat transfer performance and pressure drop of high permeability metal cellular porous media in air flow using a 3-dimensional thermofluid computation code. The temperature and velocity distributions in the air flow region, local heat transfer coefficient, and local heat flux on the surface of the porous media were numerically calculated for steady air flow by changing the parameters of the pore size and air velocity. The cellular porous media were modeled by pin array, cube geometry, and truncated octahedron geometry using thin wires. The diameter of the wires was 0.1 mm, and the pore per inch (PPI) was 5–50. The relations between the Nusselt number using the volumetric heat transfer coefficient and the Reynolds number were obtained from our calculation results, and we compared them with conventionally proposed experimental correlations. Also, the pressure drop calculation result was compared with conventionally proposed experimental correlations. The following results were obtained. The local heat transfer coefficient and local heat flux on the surface of porous media were small near the joint positions of the wires of the cellular porous media because of the thermal boundary layer. The volumetric heat transfer coefficient and pressure drop agreed with conventionally proposed experimental correlations within errors of twice the volumetric heat transfer coefficient and pressure drop. The relation between the heat transfer rate per unit volume and the heat transfer area per unit volume agreed with the convection heat transfer correlation for a tube bundle.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In