0

Full Content is available to subscribers

Subscribe/Learn More  >

Nano Heat Pipe: Nonequilibrium Molecular Dynamics Simulation

[+] Author Affiliations
Mohammad Moulod, Gisuk Hwang

Wichita State University, Wichita, KS

Paper No. IMECE2016-67448, pp. V008T10A021; 5 pages
doi:10.1115/IMECE2016-67448
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

A heat pipe has been known as a thermal superconductor utilizing a liquid-vapor phase change, and it has drawn significant attentions for advanced thermal management systems. However, a challenge is the size limitation, i.e., the heat pipe cannot be smaller than the evaporator/condenser wick structures, typically an order of micron, and a new operating mechanism is required to meet the needs for the nanoscale thermal management systems. In this study, we design the nanoscale heat pipe employing the gas-filled nanostructure, while transferring heat via ballistic fluid-particle motions with a possible returning working fluid via surface diffusions along the nanostructure. The enhanced heat flux for the nano heat pipe is demonstrated using the nonequilibrium molecular dynamics simulations (NEMDS) for the argon gas confined by the 20 nm-long Pt nanogap with a post wall with the temperature difference between the hot and cold surfaces of 20 K. The predicted results show that the maximum heat flux through the gas-filled nanostructure (heat pipe) nearly doubles that of the nanogap without the post wall at 100 < T < 140 K. The optimal operating conditions/material selections are discussed. The results for the nanogap agree with those obtained from the kinetic theory, and provide insights into the design of advanced thermal management systems.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In