Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Transport During Droplet Deposition and Spreading on Smooth and Microstructured Superhydrophilic Surfaces

[+] Author Affiliations
Jordan P. Mizerak, Van P. Carey

University of California, Berkeley, Berkeley, CA

Paper No. IMECE2016-66148, pp. V008T10A013; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME


The dynamic behavior of impinging water droplets is studied in the context of varying surface morphologies on smooth and microstructured superhydrophilic surfaces. The goal of this study is to evaluate the capability of contact angle wall adhesion models to accurately produce spreading phenomena seen on a variety of surface types. We analyze macroscale droplet behavior, specifically spreading extent and impinging regime, in situations of varying microscale wetting character and surface morphology. Axisymmetric, volume of fluid (VOF) simulations with static contact angle wall adhesion are conducted in ANSYS Fluent. Simulations are performed on water for low Weber numbers (We<20) on surfaces with features of length scale 5–10μm. Advanced microstructured surfaces consisting of unique wetting characteristics and lengths on each face are also tested. Results show that while the contact angle wall adhesion model shows fair agreement for conventional surfaces, the model underestimates spreading by over 60% for surfaces exhibiting estimated contact angles below approximately 0.5°. Microstructured surfaces adapt the wetting behavior of smooth surfaces with higher effective contact angles based on contact line pinning on morphology features. The propensity of the model to produce Wenzel and Cassie-Baxter states is linked to the spreading radius, introducing an interdependency of microscale wetting and macroscale spreading behavior. Conclusions describing the impact of results on evaporative cooling are also discussed.

Copyright © 2016 by ASME
Topics: Drops , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In