0

Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Shell and Tube Transport Membrane Condenser Heat Exchangers in Low Grade Waste Heat and Water Recovery Applications

[+] Author Affiliations
Soheil Soleimanikutanaei, Esmaiil Ghasemisahebi, Cheng-Xian Lin

Florida International University, Miami, FL

Dexin Wang

Gas Technology Institute, Des Plaines, IL

Paper No. IMECE2016-67906, pp. V008T10A011; 7 pages
doi:10.1115/IMECE2016-67906
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

In this study Transport Membrane Condenser (TMC), a new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been studied for waste heat and water recovery in power plant application. TMC is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). The effects of mass flow rate of flue gas and water vapor content of flow on the heat transfer and condensation rate of a TMC shell and tube heat exchanger have been studied numerically. A single phase multi-component model is used to assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions. Numerical simulation has been performed using ANSYS-FLUENT software and the condensation rate model has been implemented applying User Define Function.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In