0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Condensation Flow Patterns and Heat Transfer Characteristic on a Horizontal Tube Bundle

[+] Author Affiliations
Hongfang Gu, Qi Chen, Zhe Zhang, Haiyang Guo

Xi’an Jiaotong University, Xi’an, China

Paper No. IMECE2016-67459, pp. V008T10A010; 9 pages
doi:10.1115/IMECE2016-67459
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

The numerous studies on condensation flow patterns and heat transfer were focused on the horizontal inside single tube. A number of heat and mass transfer correlations are used for design of shellside condensers based on tubeside condensation flow regimes. Due to a complex geometry and measurement difficulty in a tube bundle, there are few publications reported on shellside condensation flow regime and heat transfer characteristics. To investigate the condensation flow patterns and heat and mass transfer mechanism at the different flow regimes, a horizontal shellside condenser was tested from a multipurpose condensation rig recently. The horizontal test bundle is made of 36 tubes with the staggered tube layout. The tube OD is 19 mm and the tube length is 1.0 m using stainless steel. Four visualization windows were placed on the front and back sides on the shell for photographing condensation flow patterns. Steam and steam/air mixture were used as the test fluids. The condensation flow patterns, condensate film thickness and droplets distribution were recorded using a high-speed digital camera at a wide range of condensation process conditions. The experimental data show that the condensation flow regime changes from the shear-controlled flow to gravity-controlled flow depending on the vapor and condensate loads, bundle location and the concentration of the non-condensable gas. These experimental data provide a fundamental approach for developing the heat and mass transfer correlateons at different shellside condensation patterns. This paper presents the experimental result on shellside condensation patterns associated with heat transfer characteristics.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In