0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Flame-Flow Interaction Under Distributed Combustion Conditions

[+] Author Affiliations
Ahmed E. E. Khalil, Ashwani K. Gupta

University of Maryland, College Park, MD

Paper No. IMECE2016-65255, pp. V008T10A002; 9 pages
doi:10.1115/IMECE2016-65255
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5062-6
  • Copyright © 2016 by ASME

abstract

Colorless Distributed Combustion (CDC) has shown significant improvements in terms of high combustion efficiency, ultra-low pollutants emission, low combustion noise, uniform thermal field, and enhanced stability. Colorless distributed combustion is fostered through reduced oxygen concentration and high temperature oxidizer to result in distributed reaction over a larger volume of the combustor and uniform thermal field. In this paper, the interaction between fluid mechanics (velocity field, characterized through particle image velocimetry) and the reaction region (identified through hydroxyl planar laser induced fluorescence) is investigated with focus on swirl assisted distributed combustion. Nitrogen/Carbon Dioxide mixture was added to the normal air upstream of the burner to simulate the hot reactive gases. Comparing the PIV data for reacting conditions with OH-PLIF revealed significant difference between normal swirl and CDC flames. In swirl flame, the flame was located around the shear layer of the entry jet (with both the inner and outer recirculation zones) where the velocity fluctuations and OH-PLIF fluctuations coincided. Flame transitioning to CDC pushed the reaction zone further downstream to locate at a position of lower velocity than what was found for swirl flames. In addition, the reaction zone occupied a much larger volume with lower signal intensity to exhibit distributed reaction. Experiments performed at same flow rates and velocities but with no reduction in oxygen concentration confirmed that the change in reaction behavior is attributed to the lower oxygen concentration rather than the increased flowrates due to dilution.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In