0

Full Content is available to subscribers

Subscribe/Learn More  >

Phase-Doppler Anemometry Measurements in Water-Air Impinging Jet Flows

[+] Author Affiliations
Yakang Xia, Lyes Khezzar, Mohamed Alshehhi

Petroleum Institute, Abu Dhabi, UAE

Paper No. IMECE2016-65199, pp. V007T09A086; 6 pages
doi:10.1115/IMECE2016-65199
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME

abstract

Flow visualization using high speed photography is used to study the structure of two liquid and one air impinging turbulent jets. The break up structure is discussed and the resulting spray angle at large air flow rates is obtained. The spray angle increases with the air flow rate except for the case when the water jet velocity is so small that the flow rate of air does not have significant effects on the spray angle. Phase Doppler Anemometry measurements of liquid droplet sizes and velocities are also given in terms of radial profiles at several axial locations from the point of impingement.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In