0

Full Content is available to subscribers

Subscribe/Learn More  >

An Optimum Design Approach for Textured Thrust Bearing With Elliptical-Shape Dimples Using CFD and DOE Including Cavitation

[+] Author Affiliations
Gen Fu, Alexandrina Untaroiu

Virginia Tech, Blacksburg, VA

Paper No. IMECE2016-66971, pp. V007T09A078; 10 pages
doi:10.1115/IMECE2016-66971
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME

abstract

Surface texturing has been used to enhance contact performance for decades since 1960s. Surface structures can tremendously change the friction coefficient of the contact surface. These structures have been widely used in bearings and seals. According to previous studies, textured thrust bearings provide more loading capacity than non-textured bearings. Compared to tapered and step bearings, the dimples can also reduce the friction torque. However, most previous optimization efforts for texturing geometry were focused on rectangular dimples and employed Reynolds equation. Limited studies have been done to investigate the effects of partially textured thrust bearings with elliptical dimples. This study proposes a new optimization approach to find the optimal partially texture geometry with elliptical dimples, which maximize the loading capacity and minimize the friction torque. In this study, a 3D computational fluid dynamics model for a parallel sector-pad thrust bearing is built using ANSYS CFX software instead of solving Reynolds equation with simplified field assumptions. Only one sector of the thrust bearing is modeled. Mass conserving cavitation model is used to simulate the cavitation region inside the dimples. Energy equation for Newtonian flow is also solved. Realistic boundary conditions are applied. The results of the model are validated by the experimental data from the literature. Based on this model, the flow pattern and pressure distribution inside the dimples are analyzed. Then, the geometry of elliptical dimple is parameterized and analyzed using the method of design of experiments (DOE). In this study, all the dimples have identical geometry. The selected geometry parameters include the length of major axis, the length of minor axis, dimple depth, circumferential space between two dimples, radial space between two dimples, radial extend and circumferential extend. The design space is sampled using central composite method. A temperature threshold is set to exclude the design points which result in high temperatures. A quadratic response surface model is created based on the results of the DOE process. Next, a multi-objective optimization scheme is used to find the optimal texture structure with the load force and friction torque set as objective functions. The results show that the shape of dimples has a crucial effect on the performance of the textured thrust bearings. This optimization approach proposed is expected to be useful in typical texture design process of thrust bearing.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In