Full Content is available to subscribers

Subscribe/Learn More  >

Vortex Shedding Control on a Three-Dimensional Ground Vehicle With Synthetic Jets

[+] Author Affiliations
Wenshi Cui, Zhigang Yang, Guojun Wang, Hua Zhou

Tongji University, Shanghai, China

Paper No. IMECE2016-66246, pp. V007T09A071; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


The study is mainly focused on the influence of the vortex shedding control of a three-dimensional ground vehicle by using synthetic jet actuators based on Large-eddy simulation. Excitation parameters for synthetic jet actuators, such as the excitation frequency, momentum coefficient and jet location, have an influence on vortex shedding control process, which lead to different unsteady flow phenomenon, vortex shedding frequency value and space distribution in the wake. Vortex shedding suppression and vortex-synchronization phenomenon have an influence on the pressure. Under present momentum coefficient, the excitation frequency plays an important role in the occurrence of vortex-synchronization phenomenon behind vertical base. As the momentum coefficient increase, the vortex-synchronization zone expands.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In