Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine

[+] Author Affiliations
Cosan Daskiran, Jacob Riglin, Alparslan Oztekin

Lehigh University, Bethlehem, PA

Paper No. IMECE2016-65828, pp. V007T09A064; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


Three-dimensional steady state Computational Fluid Dynamics (CFD) analyses were performed for a pre-designed micro-hydrokinetic turbine to investigate the blockage ratio effect on turbine performance. Simulations were conducted using a physical turbine rotor geometry rather than low fidelity, simplified actuator disk or actuator lines. The two-equation k-ω Shear Stress Transport (SST) turbulence model was employed to predict turbulence in the flow field. The turbine performance at the best efficiency point was studied for blockage ratios of 0.49, 0.70 and 0.98 for three different free stream velocities of 2.0 m/s, 2.25 m/s and 2.5 m/s. Distinct blockage ratio results at a free stream velocity of 2.25 were compared to a previous numerical study incorporating the same rotor geometry within an infinite flowing medium. The pressure gradient between turbine upstream and turbine downstream for blocked channel flows elevated the turbine performance. The increment in blockage ratio from 0.03 to 0.98 enhanced power coefficient from 0.437 to 2.254 and increased power generation from 0.56 kW to 2.86 kW for the present study.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In