Full Content is available to subscribers

Subscribe/Learn More  >

Differences in Predicted Flow-Induced Vibration of Submarine Pipelines Considering Cross-Flow and Inline Oscillations and its Influence in Fatigue-Life

[+] Author Affiliations
Anthony Dominguez, Armando Blanco, Euro Casanova, Nelson Loaiza, Janneth García

Universidad Simón Bolívar, Caracas, Venezuela

Paper No. IMECE2016-65796, pp. V007T09A063; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


In offshore facilities, the most widely spread way to transport fluids in relatively short distances is through submarine pipelines. These structures are subject to internal and external forces. Nowadays, most of the proposed models to study submarine pipelines subjected to vortex induced vibrations feature a circular cylinder, submitted to a cross-flow, and are able to display oscillations in just the transverse direction to the fluid flow velocity.

In this paper three different models that consider a two-dimensional fluid flow around a pipeline were studied via ANSYS CFX®, for Reynolds numbers between 100 and 700, with the purpose of determining the limitations of the 1-DOF models based on the Strouhal number and lift and drag coefficients and account its influence in fatigue lifespan. These models consisted of a static cylinder — i.e. no oscillations —, a cylinder with 1-DOF — i.e. cross-flow oscillations — and a cylinder with 2-DOF — i.e. cross-flow and inline oscillations —.

It was found that, although fluid flow Reynolds numbers were very small as to make the submarine pipeline models fall within the finite-life region, a 1-DOF model is accurate enough to predict fatigue lifespan, since it presents respect to the 2-DOF model little deviation in the chosen comparison parameters.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In