Full Content is available to subscribers

Subscribe/Learn More  >

3D Dynamic Simulation of a Flow Force Compensated Pressure Relief Valve

[+] Author Affiliations
Giorgio Altare, Massimo Rundo

Politecnico di Torino, Turin, Italy

Micaela Olivetti

OMIQ s.r.l., Milan, Italy

Paper No. IMECE2016-65624, pp. V007T09A061; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


The paper deals with the 3D and 0D simulation of a conical popped pressure relief valve with flow force compensation. The commercial CFD code PumpLinx® was used to create a dynamic model of the valve and the interaction between the poppet dynamics and pressure field was taken into account. The model is able to determine the equilibrium position of the poppet in order to estimate the regulated pressure as function of the flow rate. A good agreement with the experimental data was found in the evaluation of the effect of the flow force compensation. Once validated, the CFD code was used to study the influence of the deflector geometry on the opening force. Moreover it was also used for determining some proper data to be supplied as input to a lumped parameters model of the valve. The tuning of the 0D model involved the discharge coefficient and the flow force. For the evaluation of the flow force compensation, a lookup table was calculated by the CFD code and then interpolated in the 0D model as function of the poppet displacement and of the flow rate.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In