Full Content is available to subscribers

Subscribe/Learn More  >

An Eulerian Approach for Characterization of Solid Suspension in Multiphase Flow Systems and its Application in Hole Cleaning During Drilling

[+] Author Affiliations
Feifei Zhang

Halliburton, Houston, TX

Stefan Miska, Mengjiao Yu, Evren Ozbayoglu, Nicholas Takach

University of Tulsa, Tulsa, OK

Paper No. IMECE2016-67204, pp. V007T09A039; 11 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


Solids suspension has broad applications in the oil and gas industry (i.e., sand production, cuttings transportation during drilling, and barite sag in drilling fluids). The conventional modeling approaches for solids suspension and transportation include mechanics models (i.e., layer models) and computational fluid dynamics (CFD) based Eulerian-Lagrangian models. One of the most important assumptions for these approaches is that the solid particles have uniform size, which is not true in the actual applications. The computational fluid dynamics/discrete element method (CFD-DEM) approach can track each single particle in the system; however, the computational time is not practical for industrial applications.

This paper presents a relatively simple Eulerian approach for characterizing solids suspension in multiphase flow systems. The multiphase flow equations are derived by using a proper averaging procedure without considering interphase mass transfer. A proposed new solids suspension model, which is based on the fluid-solid interaction and kinetic theory, account for multiple solids sizes in the flow. The suspension characterizations for particles with different sizes are considered by introducing a particle size distribution function, which also captures detailed particle distribution and fluid/particle and particle/particle interactions. Therefore, a more realistic solids transportation prediction can be achieved. A simulation package is developed by solving the model using the finite difference method. The boundary-fitted coordinate system is applied to integrate the irregular geometry caused by drillpipe eccentricity and a packed solids bed. The influence of the solid phase on the carrier fluid is considered, and solid-liquid two-way coupling is implemented.

The simulation package has been used for transient hole cleaning simulations during drilling. Simulation results show that cuttings’ backsliding makes the hole cleaning process in intermediate inclined wells different from that in horizontal and highly inclined wells. The cuttings movement in this part of the well follows the two-steps-forward, one-step-back routine. Well packoff is also captured by the program for improper hole cleaning operations in an intermediated inclined position. Transient hole cleaning tests were conducted on a 90 ft long, 8 × 4.5 in. flow loop. Experimental data are compared with the simulation results, and good matching is obtained. This method can also be used as a general tool for solids suspension and transportation simulation in multiphase systems.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In