0

Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Model for the Deformation of Viscoelastic Non-Newtonian Drops Undergoing Secondary Atomization

[+] Author Affiliations
Sharon E. Snyder, Varun Kulkarni, Paul E. Sojka

Purdue University, West Lafayette, IN

Paper No. IMECE2016-67579, pp. V007T09A015; 8 pages
doi:10.1115/IMECE2016-67579
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME

abstract

While there is no single analytical model that accurately predicts all stages and modes of secondary atomization, many groups have developed models that predict deformation and oscillation of a single, isolated drop. The TAB (Taylor Analogy Breakup) model was chosen for this investigation, mainly due to its widespread use by Liu and Reitz [1], Hwang et al. [2], Tanner [3], and Lee and Reitz [4], among others. Since the TAB model is also the foundation for many other analytical models, it will also be used here as a starting point for the development of a viscoelastic non-Newtonian model to predict droplet deformed radii, droplet deformation time, and velocity at deformation time for viscoelastic xanthan gum - DI water solutions.

Three additional improvements are made to this viscoelastic TAB model: the first is a change to a TAB coefficient; the second to the equation for the drag coefficient, and the third modification is to the breakup criterion. This model uses Carreau rheology and Zimm relaxation time. Non-dimensional drop diameter and initiation times are plotted against We; model results are compared to experimental results for a range of xanthan gum solution concentrations. Results show fair agreement between experimental results and model results for non-dimensional drop diameter, with the best match at low XG concentration and low-to-medium We (10–30). It was also noted that increased viscoelasticity seems to increase this drop diameter. Good agreement between experimental data and model results has been seen for initiation time, with increased viscoelasticity increasing this parameter as well.

Copyright © 2016 by ASME
Topics: Deformation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In