Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Ventilation Effectiveness in an Airliner Cabin Mockup

[+] Author Affiliations
Jignesh A. Patel, Byron W. Jones, Mohammad H. Hosni, Ali Keshavarz

Kansas State University, Manhattan, KS

Paper No. IMECE2016-65341, pp. V007T09A012; 7 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5061-9
  • Copyright © 2016 by ASME


Frequent air travel and long flight duration makes the study of airliner cabin environmental quality a topic of utmost importance. Ventilation effectiveness is one of the more crucial factors affecting air quality in any environment. Ventilation effectiveness, along with the overall ventilation rate, is a measure of the ability of the air distribution system to remove internally generated pollutants or contaminants from a given space. Because of the high occupant density in an aircraft cabin, local variations in ventilation are important as a passenger will occupy the same space for the duration of the flight. Poor ventilation in even a small portion of the cabin could impact multiple people for extended time periods. In this study, the local effective ventilation rates and local ventilation effectiveness in an eleven-row, full-scale, Boeing 767 cabin mockup were measured. These measurements were completed at each of the 77 seats in the mockup. Each seat was occupied by a heated mannequin. In order to simulate the thermal load inside the cabin, the mannequins were wrapped with a heating wire to generate approximately 100 W (341 BTU/hour) of heat. Carbon dioxide was used as a tracer gas for the experiments and the tracer gas decay method was employed to calculate the local effective ventilation rate and local ventilation effectiveness. The overall ventilation rate, based on total supply air flow, was approximately 27 air changes per hour. Local ventilation effectiveness ranged from 0.86 to 1.02 with a mean value of 0.94. These ventilation effectiveness values are higher than typically found in other indoor applications and are likely due to the relatively high airspeeds present in the aircraft cabin and the high degree of mixing they provide. The uniformity is also good with no areas of particularly low ventilation effectiveness being identified. No clear patterns with respect to seat location, window versus center versus aisle, were found.

Copyright © 2016 by ASME
Topics: Ventilation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In