0

Full Content is available to subscribers

Subscribe/Learn More  >

Temperature-Staged Thermal Energy Storage Enabling Low Thermal Exergy Loss Reflux Boiling in Full Spectrum Solar Systems

[+] Author Affiliations
Terry J. Hendricks, Bill J. Nesmith, Jonathan Grandidier

California Institute of Technology, Pasadena, CA

Paper No. IMECE2016-67013, pp. V06BT08A031; 11 pages
doi:10.1115/IMECE2016-67013
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5059-6
  • Copyright © 2016 by ASME

abstract

Hybrid full spectrum solar systems (FSSS) designed to capture and convert the full solar wavelength spectrum use hybrid solar photovoltaic/thermodynamic cycles that require low thermal exergy loss systems capable of transferring high thermal energy rates and fluxes with very low temperature differentials and losses. One approach to achieving this capability are high-heat-flux reflux boiling systems that take advantage of high heat transfer boiling and condensation mechanisms. Advanced solar systems are also intermittent by their nature and their electrical generation is often out-of-phase with electric utility power demand, and their required power system cycling reduces efficiency, performance (dispatchability), lifetime, and reliability. High temperature thermal energy storage (TES) at 300–600°C enables these reflux boiling systems to simultaneously store thermal energy internally to increase the energy dispatchability of the associated solar system, as this can increase the power generation profile by several hours (up to 6–10 hours) per day. Many TES phase change materials (PCM’s) exist including KNO3, NaNO3, LiBr/KBr, MgCl2/NaCl/KCl, Zn/Mg, and CuCl/NaCl, which have various operating melting points and different latent heats of fusion. Common, cost effective TES PCM’s are FeCl2/NaCl/KCl mixtures, whose phase change temperature can be varied and controlled by simple composition adjustments. This paper presents and discusses unique “temperature-staged” thermal energy storage configurations using these TES materials and analysis of such systems integrated into high-heat-flux reflux boiling systems. In this specific application, the TES materials are designed to operate at staged temperatures surrounding an operating design point near 350°C, while providing 18 kW of source heat transfer to operate a thermoacoustic power system during off-sun conditions (e.g., temporary cloud conditions, after sun-down). This work discusses relevant configurations, and critical thermal and entropy models of the TES configurations, which show the inherent minimization of thermal exergy during critical heat transfers within the configurations and systems envisioned.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In