Full Content is available to subscribers

Subscribe/Learn More  >

Hydrogen Production From Methane Steam Reforming With CO2 Capture Through Metallic Membranes

[+] Author Affiliations
Roberto Carapellucci

University of L’Aquila, L’Aquila, Italy

Eric Favre, Lorena Giordano, Denis Roizard

Université de Lorraine, Nancy Cedex, France

Paper No. IMECE2016-65363, pp. V06AT08A020; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 6A: Energy
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5058-9
  • Copyright © 2016 by ASME


As an energy carrier, hydrogen has the potential to boost the transition toward a cleaner and sustainable energy infrastructure. In this context, steam methane reforming coupled with carbon capture through membrane separation is emerging as a potential route for hydrogen generation with a reduced carbon footprint. A potential way to improve the efficiency and reduce costs of the entire process is to integrate the hydrogen production system with a gas turbine power plant, using a fraction of waste heat exhausted to provide the heat and the steam required by the endothermic reforming reaction.

The paper assesses the techno-economic performances of a small-scale hydrogen and electricity co-production system, integrating a syngas production section, a gas turbine and a membrane separation unit.

The simulation study investigates two main configurations, depending on whether the gas turbine is fed by hydrogen or natural gas. For each configuration, energy and economic performance indices are evaluated varying the main plant operating parameters, i.e. the steam reforming temperature, the permeate sweep dilution, the membrane pressure ratio and the technology of gas turbine.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In