0

Full Content is available to subscribers

Subscribe/Learn More  >

Machine Parts Modeling and Prototyping by Additive and Subtractive Manufacturing

[+] Author Affiliations
Zbigniew M. Bzymek, Rainer Hebert, Dimitriy Kosovay, Thomas Mealy

University of Connecticut, Storrs, CT

Mark Summers

CNC Software, Inc., Tolland, CT

Paper No. IMECE2016-65577, pp. V005T06A033; 12 pages
doi:10.1115/IMECE2016-65577
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 5: Education and Globalization
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5057-2
  • Copyright © 2016 by ASME

abstract

The Manufacturing Automation course in the Mechanical Engineering program at the University of Connecticut (UConn) was one of the most popular courses in the ME curriculum. The students’ benefits from the course were already described in the companion paper [1]. In this paper the advantages of prototyping and part production through Subtractive Manufacturing (SM) and Additive Manufacturing (AM) are described. The paper discusses parts fabrication done as subtractive and additive manufacturing operations. This was done in the scope of the UConn Engineering i.e. in the ME and MEM programs where Manufacturing Automation and Senior Design courses are taught. Such operations were possible thanks to the equipment available at UConn School of Engineering and thanks to the cooperation with the creator of the Mastercam software - CNC Software Inc and aircraft engines and equipment manufacturer - Pratt & Whitney of East Hartford. The integration of design and manufacturing in the course was done through putting together the operations of conceptual design, geometric design and modeling of the parts designed during the course. The models of parts done by AM were created using 3D printing in ME Laboratory out of acrylonitrile butadiene styrene and different kinds of plastic and in PW/UConn laboratory using laser and electron beam AM machines. To demonstrate further integration of design and machining automation, the students were introduced to complicated problems of surfaces crossing, connections of surfaces and edges of cross sections of the tops and valleys. Thanks to the support and cooperation of the CNC Software, Inc., it was possible to show the students how to cut complicated surfaces on different computer numerically controlled (CNC) machines that ranged from three to nine degrees of freedom specifically designed for accurate and repeatable metal working. In addition, the additive manufacturing (AM) capabilities were introduced in the course thanks to the support of Pratt & Whitney/UConn Additive Manufacturing Laboratory located on the UConn campus. The AM machines are Arcam and laser machines that use electron and laser beams to meld titanium powder. The fabricated parts of high strengths are useful as rapid prototypes or in some cases as substitution parts in an existing mechanical systems. Thanks to the UConn Engineering program and support of the corporations: CNC Software, Inc. and P&W, students were introduced to the spectrum of modern Rapid Prototyping and part sintering operations going through subtractive and additive manufacturing. The process details of the theory, practice of operations, and recommendation for use of the technologies discussed above, as well as possibilities of further applications, are described in this paper. After learning the fundamentals of these processes, students are prepared to design and analyze parts as well as the process required for different machining capabilities. Methods to introduce students to the concepts of using laser and electron beams AM machine as well the prototype machining are described in the paper. Conclusions recommending the teaching methods of product SM and AM machining concepts and lessons learned are also pointed out.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In