Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Active Curved Beam Model Using a Moving Frame Method

[+] Author Affiliations
Hidenori Murakami

University of California, San Diego, La Jolla, CA

Paper No. IMECE2016-65294, pp. V04BT05A069; 17 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5055-8
  • Copyright © 2016 by ASME


In order to develop an active large-deformation beam model for slender, flexible or soft robots, the d’Alembert principle of virtual work is derived for three-dimensional elastic solids from Hamilton’s principle. This derivation is accomplished by refining the definition of the Cauchy stress tensor as a vector-valued 2-form to exploit advanced geometrical operations available for differential forms.

From the three-dimensional principle of virtual work, both the beam principle of virtual work and beam equations of motion with consistent boundary conditions are derived, adopting the kinematic assumption of rigid cross-sections of a deforming beam. In the derivation of the beam model, Élie Cartan’s moving frame method is utilized. The resulting large-deformation beam equations apply to both passive and active beams. The beam equations are validated with the previously reported results expressed in vector form.

To transform passive beams to active beams, constitutive relations for internal actuation are presented in rate-form. Then, the resulting three-dimensional beam models are reduced to an active planar beam model. Finally, to illustrate the deformation due to internal actuation, an active Timoshenko-beam model is derived by linearizing the nonlinear planar equations. For an active, simply-supported Timoshenko-beam, the analytical solution is presented.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In