Full Content is available to subscribers

Subscribe/Learn More  >

Active Control of Rear Sub-Frame Vibration in Rear and All-Wheel Drive Vehicles

[+] Author Affiliations
J. Deng, A. R. Kashani

University of Dayton, Dayton, OH

Paper No. IMECE2016-66667, pp. V04BT05A066; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5055-8
  • Copyright © 2016 by ASME


Feedback control of the rear sub-frame structure is used to abate its gear mesh induced vibration. The goal of the active control is to absorb vibration at a location close to the perturbation source, i.e., the rear differential. Proof mass actuators (PMAs) are used in this active vibration control application. A tuned absorption-based as well as a linear quadratic active vibration control schemes, each with its own advantages and disadvantages, were developed for this application. Following to the synthesis and numerical simulation of the two active vibration control strategies, they were first evaluated on a test structure in the laboratory.

Following the laboratory evaluation, one of the active vibration control strategies was implemented on an all-wheel drive vehicle. Two small PMAs, mounted on the rear sub-frame of the vehicle, were used as the active elements in this vibration control application. An accelerometer placed next to each actuator was used as the feedback sensor.

The effectiveness of active vibration control in absorbing the shaker induced vibration of the sub-frame was successfully demonstrated. In addition, rolling dynamometer tests showed effective vibration reduction of rear differential induced vibration of the sub-frame. As expected, lowering the sub-frame vibration resulted in lower vibration and noise in the cabin.

Copyright © 2016 by ASME
Topics: Vehicles , Vibration , Wheels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In