0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Fractional Damping and Time Delay on Maxwell-Voigt Model for Vibration Isolation

[+] Author Affiliations
Sudhir Kaul

Western Carolina University, Cullowhee, NC

Paper No. IMECE2016-65100, pp. V04BT05A061; 7 pages
doi:10.1115/IMECE2016-65100
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5055-8
  • Copyright © 2016 by ASME

abstract

Models of vibration isolators are very commonly used for the design and analysis of isolation systems. Accurate isolator modeling is critical for a successful prediction of the dynamic characteristics of isolated systems. Isolators exhibit a complex behavior that depends on multiple parameters such as frequency, displacement amplitude, temperature and loading conditions. Therefore, it is important to choose a model that is accurate while adequately representing the relationships with relevant parameters. Recent literature has indicated some inherent advantages of fractional derivatives that can be exploited in the modeling of elastomeric isolators. Furthermore, time delay of damping is also seen to provide a realistic representation of damping. This paper examines the Maxwell-Voigt model with fractional damping and a time delay. This model is compared with the conventional Maxwell-Voigt model (without time delay or fractional damping) and the Voigt model in order to comprehend the influence of fractional damping and time delay on dynamic characteristics. Multiple simulations are performed after identifying model parameters from the data collected for a passive elastomeric isolator. The analysis results are compared and it is observed that the Voigt model is highly sensitive to fractional damping as well as time delay.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In