Full Content is available to subscribers

Subscribe/Learn More  >

A Variable-Gain Discrete Sliding Mode Control Strategy With PID-Type Sliding Surface for an Ultra-Precision Wafer Stage

[+] Author Affiliations
Min Li, Yu Zhu, Kaiming Yang, Chuxiong Hu, Haihua Mu

Tsinghua University, Beijing, China

Paper No. IMECE2016-66324, pp. V04BT05A037; 9 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5055-8
  • Copyright © 2016 by ASME


The ultra-precision wafer stage is an important mechatronic unit in a wafer scanner for manufacturing integrated circuits while its motion control is still the main concern. To overcome the performance-limiting trade-offs of fixed-gain discrete sliding mode control (DSMC), a novel variable-gain DSMC strategy with PID-type sliding surface is proposed for an ultra-precision wafer stage. Specially, PID-type sliding surface is employed to avoid the steady-state error induced by external disturbances. Via the exponential reaching law approach, DSMC with PID-type sliding surface is synthesized. Variable-gain control methodology is newly introduced into DSMC, and the control gain varies with the trajectory phase that the wafer stage is in and the tracking error magnitude. Performance assessment on a developed wafer stage validates that with nano-scale tracking accuracy the proposed strategy not only improves the low-frequency tracking ability without the amplification of high-frequency noise, but also possesses the excellent robustness to external disturbances.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In