Full Content is available to subscribers

Subscribe/Learn More  >

Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

[+] Author Affiliations
Feras K. Alfosail, Mohammad I. Younis

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Ali H. Nayfeh

Virginia Polytechnic Institute & State University, Blacksburg, VA

Paper No. IMECE2016-66009, pp. V04AT05A037; 10 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5054-1
  • Copyright © 2016 by ASME


In this work, we investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, a Galerkin expansion of fifteen axially loaded beam mode shapes are used to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and exact mode shapes for various values of inclination angles and applied tension. The obtained results are validated against a boundary-layer analytical solution and are found in good agreement. This constructs a basis to study the nonlinear forced vibrations of inclined risers.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In