0

Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of a Magnetorheological Fluid Knee in a Prosthetic Leg

[+] Author Affiliations
The Nguyen, Saurabh Bapat, Xinli Wang

California State University, Fresno, Fresno, CA

Paper No. IMECE2016-67798, pp. V04AT05A022; 5 pages
doi:10.1115/IMECE2016-67798
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5054-1
  • Copyright © 2016 by ASME

abstract

The purpose of the study is to theoretically model a prosthetic knee. A knee similar to magnetorheological fluid (MRF) brake is designed and the study focuses on modelling the MRF knee, predict the torque and compare it with the experimental data. The torque generated by the MRF knee is highly dependent on the gap size, angle, and the applied current. Here, the MRF knee features a non-circular rotor which results in a variable gap size for the MR fluid, between the stator and the rotor. Therefore, the gap size varies with the angle of the knee. When the current is applied and MR knee is subjected to a magnetic field, the yield stress produces the shear friction due to which the braking torque is generated. This derives the braking torque as a function of angle and applied current. A torque equation is derived from the theoretical data to yield the predicted results. In addition to the theoretical modelling and derived torque equations, the torque for the MRF fluid is also calculated experimentally. For the validation of the theoretical model and the derived torque equations, they were compared with the experimental results.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In