0

Full Content is available to subscribers

Subscribe/Learn More  >

Musculoskeletal System for Bio-Inspired Robotic Systems Based on Ball and Socket Joints

[+] Author Affiliations
Lianjun Wu, Yonas Tadesse

University of Texas at Dallas, Richardson, TX

Paper No. IMECE2016-67394, pp. V04AT05A020; 7 pages
doi:10.1115/IMECE2016-67394
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5054-1
  • Copyright © 2016 by ASME

abstract

Musculoskeletal system is the fundamental structure that allows complex mobility of biological systems. A lot of efforts have been made in the past to mimic this structure using synthetic materials for use in robotic systems. Development challenges for this technology include design and manufacturing, system integration, control methods and energy usage. One of the key elements of musculoskeletal system is artificial muscles or actuators used in this system. Actuators presented in the literature do not match the performance of natural muscles in most of the metrics such as force generation, strain output, frequency, power density, ease of control and repeatability. This paper briefly describes the recently introduced Twisted and Coiled Polymer (TCP) muscles integrated into a ball and socket joint made of ABS plus® material. The proposed structure consists of a class of ball-and-socket joint that incorporates TCP muscles and silicone to generate multidimensional actuation. Most traditional joint-and-actuator assemblies include passive rotary joints actuated by servomotors via gears transmission. Our proposed ABS based 3D printed joint is actuated by artificial muscles without any complex mechanical transmission system. In comparison with other such assemblies, the proposed joint system is a promising solution to the diverse applications in robotics, especially where soft actuators and cost effective solutions are needed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In