Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Tissue Thermal Conductivity During a Tissue Joining Process

[+] Author Affiliations
Che-Hao Yang, Roland K. Chen

Washington State University, Pullman, WA

Yang Liu

University of Michigan, Ann Arbor, MI

Wei Li

University of Texas at Austin, Austin, TX

Paper No. IMECE2016-66932, pp. V003T04A076; 6 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME


Electrosurgical vessel sealing, a tissue joining process, has been widely used in surgical procedures, such as prostatectomies for bleeding control. The heat generated during the process may cause thermal damages to the surrounding tissues which can lead to detrimental postoperative problems. Having better understanding about the thermal spread helps to minimize these undesired thermal damages. The purpose of this study is to investigate the changes of tissue thermal conductivity during the joining process. We propose a hybrid method combining experimental measurement with inverse heat transfer analysis to determine thermal conductivity of thin tissue sample. Instead of self-heating the tissue by the thermistor, we apply an external cold boundary on the other side of the tissue sample to stimulate a higher temperature gradient without denaturing the tissue in comparison to the heated method. The inverse heat transfer technique was then applied to determine the tissue thermal conductivity. Tissue thermal conductivity at different levels (0%, 25%, 50%, 75%, and 100%) of the joining process was measured. The results show a decreasing trend in tissue thermal conductivity with increasing joining level. When the tissue is fully joined, an average of 60% reduction in tissue thermal conductivity was found.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In