0

Full Content is available to subscribers

Subscribe/Learn More  >

Hierarchical Engineering Model of the Human Body

[+] Author Affiliations
Somayajulu D. Karamchetty

Technology Consultant, Potomac, MD

Paper No. IMECE2016-66253, pp. V003T04A060; 6 pages
doi:10.1115/IMECE2016-66253
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME

abstract

Engineers and scientists are able to understand and analyze the behavior of complex engineering systems in a wide range of critical technologies through hierarchical modeling followed by simulation of the model operation. This process results in a high fidelity integrated model as each level in the hierarchy is modeled in sufficient detail.

The overall objective of this effort is to develop a sophisticated hierarchical model of the human body, followed by simulation of the model operation. In this initial research phase, the feasibility of the concept is explored and a framework for the model is described. A six-level model consisting of the whole body as a system, system of systems, organs, tissues, cells, and molecules is proposed and described. This paper explains that the human body is amenable to such hierarchical modeling and describes the benefits that can be achieved.

The systems in the body deal with numerous processes: electrical, chemical, biochemical, energy conversion, transportation, pumping, sensing, communications, and so on. Control volume models for the organs in the body capture the mass and energy balance and chemical reactions. Tissue can be represented similar to structural components made of various biomaterials. Cells can be represented as a manufacturing and maintenance workforce assisted by molecular reactions.

Following the representation of a healthy body, simulation runs by inserting faults and/or deficiencies in the operational parameters into the model could reveal the causes for specific diseases and illnesses. Such modeling and simulation will benefit medical, pharmaceutical, nutritional specialists, and engineers in designing, developing, and delivering products and services to enable humans to lead healthy lives.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In