Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of an Electro-Mechanical Knee Loading Device

[+] Author Affiliations
Sai Krishna Prabhala, Sohel Anwar, Hiroki Yokota, Stanley Chien

Indiana University Purdue University Indianapolis, Indianapolis, IN

Paper No. IMECE2016-65270, pp. V003T04A049; 7 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME


The mechanical loading of knee is an effective regimen for treatment of bone related ailments like fractures, osteoarthritis, and osteoporosis [1–2]. Efficacy of knee loading is evident from the previous studies done on rodents and other small animals [3]. In order to test this loading concept on human subjects, a prototype of a portable and compact device was designed previously. In this study, the prototype device was re-designed with a modified slider crank mechanism. Since this device has multiple moving parts, durability of the parts under stress is a key factor for its success. Thus, this paper focuses on its mechanical characteristics using finite element analysis (FEA). In particular, structural deformities and modal frequency characteristics are analyzed. The FEA analysis is performed on a CAD model of the device. The static structural and modal analyses are performed on two different configurations, in which different materials were used for selected components. Individual parts were meshed and solved extensively to obtain useful results under maximum loading conditions, such as total deformation, Von Mises stress, and modal frequencies. The analysis results show that ABS plastic based design provides an optimal solution in terms weight, cost, and usability.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In