0

Full Content is available to subscribers

Subscribe/Learn More  >

A Sensitivity Study of the Porcine Head Subjected to Bump Impact

[+] Author Affiliations
Kimberly A. Thompson, Adam C. Sokolow, Juliana Ivancik, William H. Mermagen, Jr., Sikhanda S. Satapathy

US Army Research Laboratory, Aberdeen Proving Ground, MD

Timothy G. Zhang

TKC Global Inc., Aberdeen Proving Ground, MD

Paper No. IMECE2016-68178, pp. V003T04A047; 10 pages
doi:10.1115/IMECE2016-68178
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME

abstract

Understanding load transfer to the human brain is a complex problem that has been a key subject of recent investigations [4–6]. Because the porcine is a gyrencephalic species, having greater structural and functional similarities to the human brain than other lower species outlined in the literature, it is commonly chosen as a surrogate for human brain studies [7]. Consequently, we have chosen to use a porcine model in this work. To understand stress wave transfer to and through the brain, it is important to fully characterize the nature of the impact (i.e. source, location, and speed) as well as the response of the constituent tissues under such impact. We suspect the material and topology of these tissues play an important role in their response.

In this paper, we report on a numerical study assessing the sensitivity of model parameters for a 6-month old Gottingen mini-pig model, under bump loading. In this study, 2D models are used for computational simplicity. While a 3D model is more realistic in nature, a 2D representation is still valuable in that it can provide trends on parameter sensitivity that can help steer the development of the 3D model. In this work, we investigate the variation of skull and skin thickness, evaluate material variability of the skull, and consider the effects of nasal cavities on load transfer. Eighty simulations are computed in LS-DYNA and analyzed in MATLAB. The results of this study will provide useful knowledge on the necessary components and parameters of the porcine model and therefore provide more confidence in the analysis. This is an essential first step as we look toward bridging the gap between correlates of injury in animal and human models.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In