Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Brain Tissue Material Finite Element Models Based on Threshold for Traumatic Brain Injury

[+] Author Affiliations
Ashkan Eslaminejad, Mariusz Ziejewski, Ghodrat Karami

North Dakota State University, Fargo, ND

Hesam Sarvghad-Moghaddam

Harvey Mudd College, Claremont, CA

Asghar Rezaei

Mayo Clinic, Rochester, MN

Paper No. IMECE2016-67505, pp. V003T04A041; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME


Blast traumatic brain injury (bTBI) may happen due to sudden blast and high-frequency loads. Due to the moral issues and the burden of experimental approaches, using computational methods such as finite element analysis (FEA) can be effective. Several finite element studies have focused on the effects of TBI to anticipate and understand the brain dynamic response. One of the most important factors in every FEA study of bTBI is the accurate modeling of brain tissue material properties. The main goal of this study is a comparison of different brain tissue constitutive models to understand the dynamic response of brain under an identical blast load. The multi-material FE modeling of the human head has several limitations such as its complexity and consequently high computational costs. Therefore, a spherical head model is modeled which suggests more straightforward observation/understanding of the FE modeling of skull (solid), CSF (fluid), and the brain tissue. Three different material models are considered for the brain tissue, namely hyperelastic, viscoelastic, and hyperviscoelastic. Brain dynamic responses are studied in terms of the head kinematics (linear acceleration), intracranial pressure (ICP), shear stress, and maximum mechanical strain. Our results showed that the hyperelastic model predicts larger ICP and shear than other constitutive brain tissue models. However, all material models predicted similar shear strain and head accelerations.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In