0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Assessment of a Noninvasive Swallowable Biosensor Deployment System in Microgravity

[+] Author Affiliations
Piotr R. Slawinski

Vanderbilt University, Nashville, TN

Weston M. Lewis, Benjamin S. Terry

University of Nebraska-Lincoln, Lincoln, NE

Paper No. IMECE2016-65039, pp. V003T04A001; 6 pages
doi:10.1115/IMECE2016-65039
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5053-4
  • Copyright © 2016 by ASME

abstract

Ingestible capsule endoscope technology has been a topic of research since the middle of the 20th century and has become a prominent area of study since the commercialization of capsule endoscopy in 2000. Ingestible telemetry capsules have been investigated by NASA in the last 20 years as a means for monitoring human body temperature during periods of physical exhaustion, but are limited in sensing time due to passage through the digestive system. In this work, we present a feasibility study on a sensor that attaches to the intestinal mucosa after being delivered to the bowel via ingestible capsule to be used on long distance space flights. This study included experiments conducted on NASA’s Weightless Wonder aircraft and replicated in a laboratory setting on the ground. During these experiments, a capsule was activated, manually inserted into excised porcine small intestine, and then automatically implanted a sham sensor onto the mucosal lining. The purpose of the experiment was to determine if the automated implantation sequence is affected by microgravity. Eight trials conducted in each setting yielded successful implantation of four sham sensors in microgravity and three in earth gravity. Results suggest that automated implantation is feasible in both 1G and microgravity environments though design changes are necessary to significantly improve repeatability in both environments. Though improvements in reliability of the device are needed, this experiment is a benchmark for transferring capsule technology currently used only for visual screening of the bowel to health monitoring systems for space flights.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In