Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Cure Temperature and Pressure on Autoclave-Bonded Polycarbonate Single Lap Joints

[+] Author Affiliations
Sayed A. Nassar, Shraddha Jagatap

Oakland University, Rochester, MI

Marcello Tardito

Politecnico di Torino, Torino, Italy

Paper No. IMECE2016-67427, pp. V002T02A085; 8 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME


This study investigates the effect of cure temperature and pressure on the mechanical performance of autoclave-bonded single lap joints (SLJ). Joint load transfer capacity (LTC) and failure mode analysis are provided. Test joints are made of two polycarbonate lexan adherends that are autoclave-bonded together using aliphatic polyether (Polyurethane) film adhesive (Huntsman PE399). Two levels of cure pressure and cure temperature are investigated, for their effect on joint load transfer capacity and failure. Data analysis and discussion are provided.

Copyright © 2016 by ASME
Topics: Pressure , Temperature



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In