0

Full Content is available to subscribers

Subscribe/Learn More  >

A Finite Element Analysis for Thermal Analysis of Laser Cladding of Mild Steel With P420 Steel Powder

[+] Author Affiliations
Navid Nazemi, Jill Urbanic

University of Windsor, Windsor, ON, Canada

Paper No. IMECE2016-65654, pp. V002T02A073; 10 pages
doi:10.1115/IMECE2016-65654
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME

abstract

Laser cladding is a rapid physical metallurgy process with a fast heating-cooling cycle in which different compositions and properties of the alloy are melted on the surface of the substrate by the high-energy laser beams. This fabrication process method is accompanied with complex metallurgy and transformation processes. Numerical simulation tools can simulate the process of laser cladding, and optimize the parameters and predict the potential cladding defects of the cladding. In the present study, a three-dimensional finite element model was built for a powder-feed laser cladding model process. A transient temperature field was built, where the conical Gaussian distribution of moving heat source, conduction, convection, and radiation heat transfer are simulated. In the analysis, the temperature dependent material properties as well as the phase transformation behavior of the materials was taken into account. The addition of material is numerically carried out in a thermal-metallurgical-mechanical coupled manner. As a benchmark to validate the simulated model, experimental Vickers microhardness data was used and the observed bead shape of the specimen was compared to the simulation results. The finite element simulation was conducted by SYSWELD software. This paper will present the results of a study where P420 steel cladding powder (a steel commonly used in injection molding) which is deposited on low/medium carbon structural steel plates (AISI 1018) using the coaxial powder flow laser cladding method. The results reveal how the process parameters affect the distribution of the temperature, bead geometry, and strength.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In