0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Characterization of a Bi-Material Co-Extruder for Fused Deposition Modeling

[+] Author Affiliations
Mohammad Abu Hasan Khondoker, Dan Sameoto

University of Alberta, Edmonton, AB, Canada

Paper No. IMECE2016-65330, pp. V002T02A060; 9 pages
doi:10.1115/IMECE2016-65330
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME

abstract

Fused Deposition Modeling (FDM) is a popular style of additive manufacturing (AM) where a 3D object is fabricated by a molten material deposited into successive 2D layers. Multi-material 3D printing is particularly challenging due to poor adhesion between dissimilar plastics. The majority of currently available multi-material printers use separate nozzles for each material. Therefore, they are incapable of producing devices made of functionally gradient materials (FGM). FGM is a special class of engineering material exhibiting spatially inhomogeneous content, which tailors the material for specific functional and performance requirements. In this work, we present the design and characterization of a bi-material co-extruder system. This specialized extruder is capable of printing two thermoplastic materials through a single nozzle and is also capable of altering the composition of the deposited material while printing. It is also exceptional in that the internal structure of the hot end can be easily accessed and is a more adaptable design than previously reported co-extruders. The extruder was installed on a Geeetech PI3 Pro C printer. Then, some simple structures were printed using pairs of materials including polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). Without any internal mixing features, the composition of the output (for instance, different colored PLA) was determined from microscopic images of cross-section of the extrudates.

Copyright © 2016 by ASME
Topics: Design , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In