0

Full Content is available to subscribers

Subscribe/Learn More  >

Contribution of Different Strengthening Effects in Particulate-Reinforced Metal Matrix Nanocomposites Prepared by Additive Manufacturing

[+] Author Affiliations
Yachao Wang, Jing Shi

University of Cincinnati, Cincinnati, OH

Xiaoyang Deng, Shiqiang Lu

Nanchang Hangkong University, Nanchang, China

Paper No. IMECE2016-67312, pp. V002T02A047; 7 pages
doi:10.1115/IMECE2016-67312
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME

abstract

Laser assisted additive manufacturing (LAAM) is regarded as a complementary manufacturing method to traditional manufacturing technologies. Meantime, improving the mechanical performance of components fabricated by LAAM is an important research focus in recent years and it has drawn significant attention from both industrial and research aspects. In the present study, in order to obtain high-performance metal components by LAAM, nano-TiC particles are used to reinforce Inconel 718 and the mixed raw powder is processed by selective laser melting (SLM) technique. To investigate the effect of TiC amount on the property and performance of the composite, samples with four levels of nano-TiC addition (0, 0.4, 0.8 and 1.6 wt.%) are prepared, all other manufacturing parameters are set fixed. Furthermore, standard solid solution treatment at 980 °C for 1 hour is carried out to investigate its effect on the final properties. SEM observations are performed to analyze the microstructure of the composites. In addition, to understand the reinforcing mechanism of nano particles in LAAM-produced metal composites at both as-built and heat treated state, we consider four main strengthening mechanisms, (a) load-bearing effect, (b) enhanced dislocation density due to the residual plastic strain caused by the difference in the coefficients of thermal expansion (CTE) between the matrix and reinforcing particles, (c) Orowan strengthening effect, and (d) Hall-Petch strengthening. The effect of TiC nano particle amount on each of the four strengthening mechanisms is investigated separately and the results show that within the investigated range, the increase of reinforcement content leads to higher tensile strength. With 1.6 wt.% reinforcement, the ultimate tensile strength increases by 15%. At as-built condition, the composites have the maximum yield strength (YS) and ultimate tensile strength (UTS), while for solution treated samples, the tensile strengths are overall lower due to microstructure coarsening. Through quantitative investigation, it is found that both as-built and solution treated conditions, the load-effect strengthening effect is very small as compared with other contributors. Thermal mismatch strengthening effect is most significant at any volume fraction under as-built condition, mainly due to high SLM temperature. However, for solution-treated condition, CTE mismatch strengthening is weakened because solution treatment significantly equilibrates the thermal strain in the composite, and diminishes most strain-induced dislocations. However, Hall-Petch strengthening becomes dominating as large amount of nanoparticles effectively inhibit the grain coarsening during solution treatment.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In