Full Content is available to subscribers

Subscribe/Learn More  >

CFD Modeling the Cooling Stage of Reflow Soldering Process

[+] Author Affiliations
Ana C. Ferreira, Senhorinha F. C. F. Teixeira, Ricardo F. Oliveira, Nelson J. Rodrigues, José C. F. Teixeira, Delfim Soares

University of Minho, Guimarães, Portugal

Paper No. IMECE2016-66447, pp. V002T02A024; 9 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME


Reflow soldering is one of the most widespread soldering technologies used in the electronics industry. It is a method of attaching surface components to a circuit board with solder paste. The goal of the reflow process is to melt the solder and heat the adjoining surfaces, without overheating and damaging the electrical components. In the present study, computational fluid dynamics (CFD) was used to investigate the convection flow field during the cooling reflow process stage. The convection heat-transfer coefficient and temperature distribution within the board level were also studied. The analysis comprises three main objectives: (1) the simulation of the cooling process of a PCB in the final section of the reflow oven; (2) the calculation of the heat transfer from the PCB to the air as the PCB moves throughout the woven; and (3) use a “dummy” PCB with two generic components with different dimensions and analyze the heat dissipation. The geometry definition, the mesh generation, as well as the numerical simulations were carried out using the Workbench™ platform from ANSYS® 15. It was programmed an UDF to represent the relative motion between the PCB and the cooling air flow. Results shown that, during the cooling process, there is a gradient over the PCB board. It is also observed that there is a small differentiation in the temperatures’ profile along the board length probably because of the formation of recirculation areas inside the oven. Thus, nozzle spacing has a great impact in the formation of those recirculation areas, and consequently in heat dissipation.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In