Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Tool Deflection in End Milling of Titanium

[+] Author Affiliations
Christian Hasenfratz, Eberhard Abele

Technical University of Darmstadt, Darmstadt, Germany

Paper No. IMECE2016-66620, pp. V002T02A010; 12 pages
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5052-7
  • Copyright © 2016 by ASME


The world’s increasing demand for intercontinental mobility is leading to a steady growth in aircraft sales, with Airbus forecasting a total demand for 32,600 passenger aircraft until the year 2034. However, this demand arises not solely due to increased passenger numbers but also due to the need of replacing current aircraft as a consequence of their increasing service life. Since fuel consumption accounts for about one-third of operating costs, airlines need efficient jet engines to meet reduced noise emissions and fuel consumption demands in order to withstand international cost pressures. The development of new aircraft types focuses on the aspect of weight reduction. The aerospace industry is characterized not only by innovations in material science and technology, but also by increased integral construction of individual components for the sake of weight reduction.

Integral components are characterized by deep cavities and consist of difficult-to-cut materials to achieve weight reduction, presenting challenges for manufacturing technology. The most commonly encountered manufacturing technology for integral components is high performance cutting (HPC), using tools with a large overhang, whereby the process chain consists of two stages: roughing and finishing. However, manufacturing of integral components pushes HPC milling to its productivity limits. The interaction between work piece and end mill in the form of radial cutting forces leads to tool deflection and therefore limits the manufacturing of deep cavities. The present experimental study contributes to the analysis of tool deflection in the end milling of integral components, e.g., a blade integrated disk made of titanium for the aerospace industry.

The goal is to identify and describe tool deflection during milling and to analyze its interdependence with form deviation, as well as the local and global tool load.

A dynamometer is used to measure the global load on the tool and an experimental setup is designed and implemented to measure tool deflection and to identify the influence of the tool holder on total tool deflection. To determine tool deflection, the tool’s stiffness is determined by a reference measurement. Tool stiffness is utilized to determine tool deflection during the process and the results are illustrated for a range of technology parameters and tool wear. Tool deflection leads to a form deviation of the finished component as well as to changing contact conditions of the cutting edge, leading to increased tool wear. This study aims at providing a basic understanding of the relationship between milling force, tool deflection and form deviation under the influence of technology parameters and tool wear.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In