0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of the PTM Transition Model on a 3D Flow Through a Turbine Cascade

[+] Author Affiliations
Sergiy Yershov, Viktor Yakovlev

Institute for Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkiv, Ukraine

Paper No. IMECE2016-65001, pp. V001T03A046; 11 pages
doi:10.1115/IMECE2016-65001
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5051-0
  • Copyright © 2016 by ASME

abstract

This study presents a numerical simulation of a 3D viscous subsonic flow in the VKI-Genoa turbine cascade taking into account the laminar-turbulent transition. The numerical simulation is performed using the Reynolds-averaged Navier-Stokes (RANS) equations and the low-Reynolds k-ω SST turbulence model. The Langtry’s algebraic Production Term Modification (PTM) model is applied for modeling the laminar-turbulent transition. The governing equations are integrated using the second-order accurate Godunov’s type implicit ENO scheme. Computations of both fully turbulent and transitional flows are carried out. Much attention is given to the comparison between the present numerical results and the existing experimental data. The comparison was based on the surface distributions of the isentropic velocity, the friction velocity, the flow acceleration parameter, the displacement thickness, the shape-factor, and the momentum thickness Reynolds number. Velocity profiles upstream and downstream of the transition onset were compared also. The numerical results obtained show an influence of the transition on the secondary flow pattern. In the case of the transitional flow, when compared with the fully turbulence flow case, the endwall boundary layer cross-flow starts upstream, and it is more intensive, but less massive due to a thinner boundary layer in the laminar flow region.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In